Introduction: coming attractions

Monday, August 14, 2023 9:32 AM

Fundamental theorem of Algebra
On the invention of Complex numbers:
Look at a cubic equation of the form $t^{3}+p t+q=0$
Famous Cardano's formula(1545!):
$t=\sqrt[1]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}$.
Only one root? There are always three complex cubic roots!
$t^{3}-3 t=0 . p=-3, q=0$. Nice real roots: $0, \pm \sqrt{3}$
Formula:
$t=\sqrt[3]{\sqrt{-1}}+\sqrt[3]{\sqrt{-1}}$.
What is wrong? We need to take all possible values of cubic root of i !
Every (non-constant) polynomial with complex coefficients has a root In fact, if it has degree d, it has at least d roots, counting multiplicity.

$$
\begin{aligned}
& \text { Complex differentiation vs real differentiation } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

- Function can be differentiable only once: $f(x)=\left\{\begin{array}{l}x^{2}, x \geq 0 \\ -x^{2}, x \leq 0\end{array}\right.$
- Even infinitely differentiable functions
- Any function differentiable at a neighborhood of a point is infinitely differentiable.

$$
\begin{aligned}
& \text { can have nothing to do with their } \\
& \text { Taylor series: } \\
& f(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\
0, & x=0 \\
f^{(x)}(0)=0 & \forall k\end{cases}
\end{aligned}
$$

$$
f(x)=\sum_{a_{k}}\left(x-x_{0}\right)^{k} \text {-real analytic }
$$

functions.

Differentiable \neq Infinitely
Differentiable

Differentiable 叉 Infinitely \quad Differentiable $=$ Infinitely Differentiable $=$ Analytic

Analytic

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0} x^{n}, \quad|x|<1 \quad x=1 \quad \text { singularity } \\
& \frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n},|x|<1 \quad \text { No real singularities, bu } z=\underline{i} i \text { - }
\end{aligned}
$$

Complex Antiderivative
Real case:
Any continuous function has an antiderivative: $F^{\prime}(x)=f(x)$

$$
F(x):=\int_{0}^{x} f(t) d t-F T C!
$$

Conformal maps and Riemann Theorem

Complex case:
Only differentiable functions have antiderivatives.

$$
F(z):=\oint_{2}^{z} f(w) d w-\operatorname{lin} e \text { in tegral. }
$$

zorn But over which path?
 $1\left((2+h)-f(z)-\frac{1}{2}\right.$

$$
\left\lvert\,(\frac{f(z+h)-f(z)}{\lambda=f^{\prime}(z)}-\underbrace{\lambda h}_{h} /\left.\right|_{ش} \rightarrow 0\right.
$$

Special important class: conformal maps: injective analytic functions.

$$
\varphi: \Omega_{1} \rightarrow \Omega_{2} \text {-angle and orientation preserving map. }
$$

Theorem (Riemann) If Ω is a simply-connected domain ("a domain without holes") $\Omega \neq \mathbb{C}$. Then $\exists \varphi: \mathbb{D} \neg \Omega$-conformal bijection!

[^0]
[^0]: Bernhard Riemann

